A proof system for the modal p-calculus inspired by the
determinisation of automata

Johannes Kloibhofer
(j.w.w. Maurice Dekker, Johannes Marti, Yde Venema)

Institute for Logic, Language and Computation
University of Amsterdam, Netherlands

January 11, 2023

1/23

Present non-wellfounded proof systems for the modal p-calculus

Show connections to automata theory

Introduce determinisation method for parity automata

Define proof system using this method

® Discuss benefits of this system

2/23

Modal p-calculus

The formulas in the modal p-calculus are generated by the grammar

o u=p | Dl L] T (eVe) | (eAe) | Cp | Op | pre | vryp

3/23

Modal p-calculus

The formulas in the modal p-calculus are generated by the grammar

o u=p | Dl L] T (eVe) | (eAe) | Cp | Op | pre | vryp

® Formulas of the form ux ¢ and vx ¢ are called fixpoint formulas and
interpreted as the least and greatest fixpoint of ¢

3/23

Modal p-calculus

The formulas in the modal p-calculus are generated by the grammar

o u=p | Dl L] T (eVe) | (eAe) | Cp | Op | pre | vryp

® Formulas of the form ux ¢ and vx ¢ are called fixpoint formulas and
interpreted as the least and greatest fixpoint of ¢

® In ux ¢ and vx ¢ there are no occurrences of T in

3/23

Modal p-calculus

The formulas in the modal p-calculus are generated by the grammar

o u=p | Dl L] T (eVe) | (eAe) | Cp | Op | pre | vryp

® Formulas of the form ux ¢ and vx ¢ are called fixpoint formulas and
interpreted as the least and greatest fixpoint of ¢

® In ux ¢ and vx ¢ there are no occurrences of T in

e A fixpoint formula ¢ is more important than a fixpoint formula ¢ if ¢
is a subformula of ¢

3/23

Let M = (W, R, V) be the following Kripke model
- O—0O—O
<:::::> w1 w9 w3

Wyq

4/23

Let M = (W, R, V) be the following Kripke model
- O—0O—O
<:::::> w1 w9 w3

Wyq

° M,wkE<p

4/23

Let M = (W, R, V) be the following Kripke model
- O—0O—O
<:::::> w1 w9 w3

Wyq

° M,wkE<p
° M,w = Op

4/23

Let M = (W, R, V) be the following Kripke model
- O—0O—O
<:::::> w1 w9 w3

Wyq

° M,wkE<p
° M,w = Op
e Myw e p (pv Oz)

4/23

Let M = (W, R, V) be the following Kripke model
- O—0O—O
<:::::> w1 w9 w3

Wyq

M,w = <$p

* M,w = Op
Myw = iz (pV D)
M w £ ve Sz

4/23

Proof theory of the modal p-calculus

¢ [Kozen '83] introduced finitary proof system with explicit induction
rules

5/23

Proof theory of the modal p-calculus

¢ [Kozen '83] introduced finitary proof system with explicit induction
rules

® Completeness proven by [Walukiewicz '00]

5/23

Proof theory of the modal p-calculus

¢ [Kozen '83] introduced finitary proof system with explicit induction
rules

® Completeness proven by [Walukiewicz '00]

¢ [Niwinski, Walukiewicz '96] introduced infinitary tableaux games
in which one player has winning strategy iff formula is valid

5/23

Proof theory of the modal p-calculus

¢ [Kozen '83] introduced finitary proof system with explicit induction
rules

® Completeness proven by [Walukiewicz '00]

¢ [Niwinski, Walukiewicz '96] introduced infinitary tableaux games
in which one player has winning strategy iff formula is valid

5/23

An NW pre-proofis a, possibly infinite, tree defined from the following
rules:

r T r
A Ae g, 2D el T
p,p, T T eV, T A, T
R #l Plpwpfa T plvap/al T
o ———————— P — P
O, o', A a px.o, T Y ve.p, I’

6/23

An NW pre-proofis a, possibly infinite, tree defined from the following
rules:

r T r
A Ae g, 2D el T
p,p, T T eV, T A, T
R #l Plpwpfa T plvap/al T
o ———————— P — P
O, o', A a px.o, T Y ve.p, I’

® There are infinite branches

® But only finitely many sequents

6/23

pxOzx, vyly
O
O(pz0z), O(vyCy) <

O(pxOz), vyly

pxOx, vyly #
Ry
pxOz V ryly

Figure: NW pre-proof of pz0Ox V vydy

7/23

® A trace (¢;)jc. on an infinite branch is an infinite sequence of
formulas such that ¢, is an immediate ancestor of ;1 for j € w.

8/23

® A trace (¢;)jc. on an infinite branch is an infinite sequence of
formulas such that ¢, is an immediate ancestor of ;1 for j € w.

® A trace is called v-trace if the most important fixpoint formula
unfolded infinitely often is a v-formula.

8/23

® A trace (¢;)jc. on an infinite branch is an infinite sequence of
formulas such that ¢, is an immediate ancestor of ;1 for j € w.

® A trace is called v-trace if the most important fixpoint formula
unfolded infinitely often is a v-formula.

Definition

An NW proof is an NW pre-proof, where on every infinite branch there is a
v-trace.

8/23

prOz, vyly
O
O(pzOz), O(ryCy) <

O(pxDx), vyy

prBx, vyy

pxOz V rydy v

Figure: NW proof of pzOz V vydy

9/23

w-automata

Variation of finite state automaton which has infinite strings as inputs

10/23

w-automata

Variation of finite state automaton which has infinite strings as inputs

Definition

Let X be a finite set, called an alphabet. A non-deterministic automaton
over X is a quadruple A = (A, A, ay, Acc), where A is a finite set,
A:Ax X — P(A) is the transition function of A, ar € A its initial state
and Acc C AY its acceptance condition.

10/23

w-automata

Variation of finite state automaton which has infinite strings as inputs

Definition

Let X be a finite set, called an alphabet. A non-deterministic automaton
over X is a quadruple A = (A, A, ay, Acc), where A is a finite set,
A:Ax X — P(A) is the transition function of A, ar € A its initial state
and Acc C AY its acceptance condition.

® An automaton is called deterministic if for all pairs (a,y) € A x ¥ it
holds |A(a,y)| = 1.

10/23

w-automata

Variation of finite state automaton which has infinite strings as inputs

Definition

Let X be a finite set, called an alphabet. A non-deterministic automaton
over X is a quadruple A = (A, A, ay, Acc), where A is a finite set,
A:Ax X — P(A) is the transition function of A, ar € A its initial state
and Acc C AY its acceptance condition.

® An automaton is called deterministic if for all pairs (a,y) € A x ¥ it
holds |A(a,y)| = 1.

® A run of an automaton on a word w = yoy1y2... € X¢ is an infinite
sequence apaias... € A such that ap = ay and a;+1 € A(ay, y;) for
all i € w.

10/23

w-automata

Variation of finite state automaton which has infinite strings as inputs

Definition

Let X be a finite set, called an alphabet. A non-deterministic automaton
over X is a quadruple A = (A, A, ay, Acc), where A is a finite set,
A:Ax X — P(A) is the transition function of A, ar € A its initial state
and Acc C AY its acceptance condition.

® An automaton is called deterministic if for all pairs (a,y) € A x ¥ it
holds |A(a,y)| = 1.

® A run of an automaton on a word w = yoy1y2... € X¢ is an infinite
sequence apaias... € A such that ap = ay and a;+1 € A(ay, y;) for
all i € w.

® A word w is accepted by A if there is a run of A on w in Acc.

10/23

w-automata

Variation of finite state automaton which has infinite strings as inputs

Definition

Let X be a finite set, called an alphabet. A non-deterministic automaton
over X is a quadruple A = (A, A, ay, Acc), where A is a finite set,
A:Ax X — P(A) is the transition function of A, ar € A its initial state
and Acc C AY its acceptance condition.

® An automaton is called deterministic if for all pairs (a,y) € A x ¥ it
holds |A(a,y)| = 1.

® A run of an automaton on a word w = yoy1y2... € X¢ is an infinite
sequence apaias... € A such that ap = ay and a;+1 € A(ay, y;) for
all i € w.

® A word w is accepted by A if there is a run of A on w in Acc.

10/23

w-automata

Let ¥ ={0,1} and A = (A, A, as, Acc) be given as
0
() 1

1
()
()

0

11/23

w-automata

Let ¥ ={0,1} and A = (A, A, as, Acc) be given as
0
() 1

1
()
()

0

The acceptance condition can be given in different ways:

11/23

w-automata

Let ¥ ={0,1} and A = (A, A, as, Acc) be given as

0 1
é

The acceptance condition can be given in different ways:

® A Biichi condition is given as a subset F' C A. The corresponding
acceptance condition is the set of runs, which contain infinitely many
states in F.

0

12/23

w-automata

Let ¥ = {0,1} and A = (A, A, ay, Acc) be given as

0 1
_ (a0 /a1
\2A 3/

The acceptance condition can be given in different ways:

® A parity condition is given as a map 2 : A — w. The corresponding
acceptance condition is the set of runs « such that
max{{2(a) | a occurs infinitely often in a} is even.

13/23

Tracking automaton

We can define nondeterministic parity automaton A s.t. for all infinite
branches « in an NW pre-proof:

A accepts o & there is a v-trace on «

14 /23

Tracking automaton

We can define nondeterministic parity automaton A s.t. for all infinite
branches « in an NW pre-proof:

A accepts o & there is a v-trace on «

Idea:
® States are formulas
® Transitions given by ancestor relation
® Parity of fixpoint formulas:

® y-formulas get even parity

® u-formulas get odd parity
® More important fixpoint formulas get higher parity

14 /23

Obtaining new proof system

Idea: build automaton into proof system

® Sequents of form a - T', where a state of tracking automaton A

15/23

Obtaining new proof system

Idea: build automaton into proof system
® Sequents of form a - T', where a state of tracking automaton A

Need automaton to be deterministic!

15/23

Obtaining new proof system

Idea: build automaton into proof system
® Sequents of form a - T', where a state of tracking automaton A

Need automaton to be deterministic!

Let AP be deterministic automaton accepting same language as A
e Sequents of form a - T, where a state of AP
Main advantage: Soundness condition based on branches instead of traces

15/23

Explicit determinisation

o Most known determinisation method is Safra construction

® Inspired by it [Jungteerapanich '10] and [Stirling "14] introduced
annotated proof system
® Sequents have form 6 - @', ... @fn

16 /23

Explicit determinisation

Most known determinisation method is Safra construction
Inspired by it [Jungteerapanich '10] and [Stirling '14] introduced
annotated proof system

® Sequents have form 6 - @', ... @fn

We develop determinisation method for nondeterministic automata
using binary trees
States of deterministic automaton B consists of

® Sets of states of A
® Every state is annotated by tuple of binary strings

16 /23

Explicit determinisation

® Most known determinisation method is Safra construction
® Inspired by it [Jungteerapanich '10] and [Stirling "14] introduced
annotated proof system
® Sequents have form 6 - @', ... @fn
® \We develop determinisation method for nondeterministic automata
using binary trees
® States of deterministic automaton B consists of

® Sets of states of A
® Every state is annotated by tuple of binary strings

® Using this method we get a different annotated proof system

® Sequents have form - ¢7*, ..., 2"
® No extra information needed!

16 /23

BT proof rules

AXL ——— AR —— g P5UNT e Ty T
o =T o V., ——— A ——————————
vt 0T vy (p A9)7.T
7. z\vz.plokk 70k
o anfm R.: Pl I/;O(],O T where k = Qo (vz.p)
olQa(pz-0) T oTr
Ry: pla\uz-] ’ Resolve: fiTI‘ where 0 > 7
px.p?, I’ e,
(ceeySti,e..) (,0('”75%7”')
7 n)
Compress;’: ! - - where s ¢ I'}
(,0(1“.78 17...)7.”’@7(1...75 n,...)7F
(ceeySti,es) (veryStny...) T
Compress;!: " o on " ; where s ¢ I“k‘} and s #40---0
Spg"ws 17"’)7.”’()07(1"'75 My 71‘1

17 /23

Definition

A BT proof is a BT pre-proof, where on every infinite branch there is a
successful string.

® Completeness and Soundness of BT proven by using determinisation
method

¢ Advantage: Soundness condition on branches instead of traces

18/23

Example proof

pux0z0, vyoy!
O(px0x)?, O(vyoy)t
O(pa0x)°, O (vyOy)t

Ro

Compress'!

Ry
Ry

Ro
O(uz0a)’, O(vyy)t

O(paOz), vyOy o

O(pxDz)°, vyoy'

pr0z0, vyoy!

prOze, vyys "

pxOx V vydyt

19/23

® Only finitely many sequents on infinite branch
[T

® Add discharge rule:

D*: r
T

20 /23

® Only finitely many sequents on infinite branch
[T
® Add discharge rule:
D> L
T
® Get cyclic proof tree

® |nfinite branches correspond to strongly connected components

20 /23

® Only finitely many sequents on infinite branch
[T
® Add discharge rule:
D> L
T
® Get cyclic proof tree

® |nfinite branches correspond to strongly connected components

Definition

A BT proof is a finite BT pre-proof, where for every strongly connected
subgraph there is a successful string.

e Comparing to Jungteerapanich system: Trade-off between extra
information and stronger soundness condition

20 /23

Example proof

[paBz°, vy Oyt
O(pxOz)°, & (ryoy)!
O(px0x)?, O(vyoy)t

Ro
1

Compress

Ry

DX

O(pz0z)%, vyOy'

pr0z0, vyOy!
px0z0, vyoy!
O(pa0z)°, O(vyOy)!
O(uxDx), vyy©
paxOxe vydy*

Ro

pxOzx V vyldys

21/23

Conclusion

® |ntroduced determinisation method for nondeterministic parity
automata

22 /23

Conclusion

® |ntroduced determinisation method for nondeterministic parity
automata

e Explicitly used this method to obtain proof system

22 /23

Conclusion

® |ntroduced determinisation method for nondeterministic parity
automata

e Explicitly used this method to obtain proof system

® Further work:

® Compare to Jungteerapanich proof system
® Translate BT proofs to proofs of Kozen's finitary proof system

22 /23

Thank you !

23/23

