Using automata theory to obtain a new
proof system for the modal p-calculus

Johannes Kloibhofer
(j-w.w. Maurice Dekker, Johannes Marti, Yde Venema)

April 21, 2023

Institute for Logic, Language and Computation
University of Amsterdam, Netherlands

1/29

e Preliminaries:

e Modal p-calculus
e Proof system for the p-calculus
e Automata theory

2/29

e Preliminaries:

e Modal p-calculus
e Proof system for the p-calculus
e Automata theory

e Show connections of automata theory and proof system

2/29

e Preliminaries:

e Modal p-calculus
e Proof system for the p-calculus
e Automata theory

e Show connections of automata theory and proof system

e Introduce determinisation method for parity automata

2/29

Preliminaries:

e Modal p-calculus
e Proof system for the p-calculus
e Automata theory

Show connections of automata theory and proof system

Introduce determinisation method for parity automata

Define proof system using automata

2/29

Preliminaries:

e Modal p-calculus
e Proof system for the p-calculus
e Automata theory

Show connections of automata theory and proof system

Introduce determinisation method for parity automata

Define proof system using automata

Discuss benefits of this system

2/29

Modal p-calculus

The formulas in the modal p-calculus are generated by the grammar

pu=p | Pl LT eve | oAp | Co | Op | uxe | vxe

3/29

Modal p-calculus

The formulas in the modal p-calculus are generated by the grammar

pu=p | Pl LT eve | oAp | Co | Op | uxe | vxe

e Formulas of the form ux ¢ and vx ¢ are called fixpoint
formulas and interpreted as the least and greatest fixpoint of ¢

3/29

Modal p-calculus

The formulas in the modal p-calculus are generated by the grammar

pu=p | Pl LT eve | oAp | Co | Op | uxe | vxe

e Formulas of the form ux ¢ and vx ¢ are called fixpoint
formulas and interpreted as the least and greatest fixpoint of ¢

e In ux ¢ and vx ¢ there are no occurrences of X in ¢

3/29

Modal p-calculus

The formulas in the modal p-calculus are generated by the grammar

pu=p | Pl LT eve | oAp | Co | Op | uxe | vxe

e Formulas of the form ux ¢ and vx ¢ are called fixpoint
formulas and interpreted as the least and greatest fixpoint of ¢

e In ux ¢ and vx ¢ there are no occurrences of X in ¢

e A fixpoint formula ¢ is more important than a fixpoint formula
¥ if ¢ is a subformula of ¢

3/29

Let M = (W, R, V) be the following Kripke model

_O0—0—®

Q N N N

w

4/29

Let M = (W, R, V) be the following Kripke model

() :
w\
)

7z

e M,wkE=<p

4/29

Let M = (W, R, V) be the following Kripke model

() :
w\
)

7z

e M,wkE=<p
e M,w [~ Op

4/29

Let M = (W, R, V) be the following Kripke model

() :
w\
)

7z

e M,wkE=<p
e M,w [~ Op
o M,w = px (pV Ox)

4/29

Let M = (W, R, V) be the following Kripke model

() :
w\
)

4z
° M7W):<>p
e M,w [~ Op
o M,w = px (p Vv Ox)
e M,w [~ rvx Ox

4/29

Proof theory of the modal p-calculus

e [Kozen '83] introduced finitary proof system with explicit
induction rules

5/29

Proof theory of the modal p-calculus

e [Kozen '83] introduced finitary proof system with explicit
induction rules

e Completeness proven by [Walukiewicz '00]

5/29

Proof theory of the modal p-calculus

e [Kozen '83] introduced finitary proof system with explicit
induction rules
e Completeness proven by [Walukiewicz '00]

e [Niwinski, Walukiewicz '96] introduced infinitary tableaux
games in which one player has winning strategy iff formula is

valid

5/29

NW pre-proofs

An NW pre-proof is a, possibly infinite, tree defined from the
following rules:

o, ¥, R, o, T

Axl: — Ax2: —— Ry: AS
p.p, T T,r oV, e N, T
Al plux-o/x],T plvx.p/x],T
Ro: ——— Ry ———— Ry ———
O, O, A ux.p, I vx.p, [

6/29

NW pre-proofs

An NW pre-proof is a, possibly infinite, tree defined from the
following rules:

o, ¥, R, o, T

Ax1: Ax2: —— R.:

p.B.T TT T ove T Y enayT
2 - elpx.p/x],T - plvx.o/x],T
Op, O A a ux.p, T . vx.p, T

e There are infinite branches

e But only finitely many sequents

6/29

Example NW pre-proof

prOx, vyly
O
O(pzOz), O (ry<y) -

O(pzOz), vyy

prOz, vyly R B

pxOx V vyly v

Figure 1: NW pre-proof of uxOx V vy<ly

7/29

NW proofs

e A trace (¢j)jew on an infinite branch is an infinite sequence of
formulas such that ; is an immediate ancestor of ;1 for

J Ew.

8/29

NW proofs

e A trace (¢j)jew on an infinite branch is an infinite sequence of
formulas such that ; is an immediate ancestor of ;1 for
J Ew.

e A trace is called v-trace if the most important fixpoint formula
unfolded infinitely often is a v-formula.

8/29

NW proofs

e A trace (¢j)jew on an infinite branch is an infinite sequence of
formulas such that ; is an immediate ancestor of ;1 for
J Ew.
e A trace is called v-trace if the most important fixpoint formula
unfolded infinitely often is a v-formula.
Definition
An NW proofis an NW pre-proof, where on every infinite branch
there is a v-trace.

8/29

Example NW proof

prOx, vyly
O(pzOz), O (ry<y) RD

O(pz0x), vyly

prOz, vyly R B

pxOx V vyly v

Figure 2: NW proof of uxOx V vy<y

9/29

w-automata

Variation of finite state automaton which has infinite strings as
inputs

10/29

w-automata

Variation of finite state automaton which has infinite strings as
inputs

Definition

Let X be a finite set, called an alphabet. A non-deterministic
automaton over ¥ is a quadruple A = (A, A, a;, Acc), where A'is a
finite set, A : Ax X — P(A) is the transition function of A, a; € A
its initial state and Acc C A“ its acceptance condition.

10/29

w-automata

Variation of finite state automaton which has infinite strings as
inputs

Definition

Let X be a finite set, called an alphabet. A non-deterministic
automaton over ¥ is a quadruple A = (A, A, a;, Acc), where A'is a
finite set, A : Ax X — P(A) is the transition function of A, a; € A
its initial state and Acc C A“ its acceptance condition.

e An automaton is called deterministic if for all pairs
(a,y) € Ax X it holds |A(a, y)| = 1.

10/29

w-automata

Variation of finite state automaton which has infinite strings as
inputs

Definition

Let X be a finite set, called an alphabet. A non-deterministic
automaton over ¥ is a quadruple A = (A, A, a;, Acc), where A'is a
finite set, A : Ax X — P(A) is the transition function of A, a; € A
its initial state and Acc C A“ its acceptance condition.

e An automaton is called deterministic if for all pairs
(a,y) € Ax X it holds |A(a, y)| = 1.

e A run of an automaton on a word w = ypy1ys... € £ is an
infinite sequence agajaz... € A“ such that ap = a; and
ai+1 € A(aj, y;) forall i € w.

10/29

w-automata

Variation of finite state automaton which has infinite strings as
inputs

Definition

Let X be a finite set, called an alphabet. A non-deterministic
automaton over ¥ is a quadruple A = (A, A, a;, Acc), where A'is a
finite set, A : Ax X — P(A) is the transition function of A, a; € A
its initial state and Acc C A“ its acceptance condition.

e An automaton is called deterministic if for all pairs
(a,y) € Ax X it holds |A(a, y)| = 1.

e A run of an automaton on a word w = ypy1ys... € £ is an
infinite sequence agajaz... € A“ such that ap = a; and
ai+1 € A(aj, y;) forall i € w.

e A word w is accepted by A if there is a run of A on w in Acc.

10/29

Example w-automata

Let X = {0,1} and A = (A, A, a;, Acc) be given as

0 1
() 1 ()
(= X

0

11/29

Example w-automata

Let X = {0,1} and A = (A, A, a;, Acc) be given as

0 1
() 1 ()
(oY)

0

The acceptance condition can be given in different ways:

11/29

Bichi automata

Let X = {0,1} and A = (A, A, ag, Acc) be given as

0 1
é

The acceptance condition can be given in different ways:

0

e A Biichi condition is given as a subset F C A. The
corresponding acceptance condition is the set of runs, which
contain infinitely many states in F.

12/29

Parity automata

Let ¥ = {0,1} and A = (A, A, ag, Acc) be given as

1

v.v

0

B -
p -

The acceptance condition can be given in different ways:

e A parity condition is given as a map Q : A — w. The
corresponding acceptance condition is the set of runs « such
that max{€Q(a) | a occurs infinitely often in o} is even.

13/29

Recap NW proofs

An NW pre-proof is a, possibly infinite, tree defined from the

following rules:

Ax1:

AX2: - R . @7w7r R . SO’r 1/}7|_

p.p.T T, T ove, T Y oAy
Al plux-o/x],T plvx.p/x],T
Ro: ——~—— R, 770 R, IR
Op, O, A ux.p, I vx.p, [
Definition

An NW proofis an NW pre-proof, where on every infinite branch
there is a v-trace.

14/29

Tracking automaton

We can define nondeterministic parity automaton A s.t. for all
infinite branches « in an NW pre-proof:

A accepts o < there is a v-trace on «

15/29

Tracking automaton

We can define nondeterministic parity automaton A s.t. for all
infinite branches « in an NW pre-proof:

A accepts o < there is a v-trace on «

Idea:

e States are formulas

e Transitions given by ancestor relation
e Parity of fixpoint formulas:

e v-formulas get even parity
e u-formulas get odd parity
e More important fixpoint formulas get higher parity

15/29

Obtaining new proof system

Idea: build automaton into proof system

e Sequents of form a I, where a state of tracking automaton A

16 /29

Obtaining new proof system

Idea: build automaton into proof system
e Sequents of form a I, where a state of tracking automaton A

Need automaton to be deterministic!

16 /29

Obtaining new proof system

Idea: build automaton into proof system
e Sequents of form a I, where a state of tracking automaton A

Need automaton to be deterministic!

Let AP be deterministic automaton accepting same language as A
e Sequents of form a - I', where a state of AP

Main advantage: Soundness condition based on branches instead of
traces

16 /29

Explicit determinisation

e Most known determinisation method is Safra construction
e Inspired by it [Jungteerapanich '10] and [Stirling '14]
introduced annotated proof system

e Sequents have form 6 F @f*, ..., b

17/29

Explicit determinisation

Most known determinisation method is Safra construction

Inspired by it [Jungteerapanich '10] and [Stirling '14]
introduced annotated proof system

e Sequents have form 6 F @f*, ..., b

We develop determinisation method for nondeterministic

automata using binary trees

States of deterministic automaton B consists of

e Sets of states of A
e Every state is annotated by tuple of binary strings

17/29

Explicit determinisation

Most known determinisation method is Safra construction

®
e Inspired by it [Jungteerapanich '10] and [Stirling '14]
introduced annotated proof system
e Sequents have form 6 F @f*, ..., b
e We develop determinisation method for nondeterministic
automata using binary trees
e States of deterministic automaton B consists of
e Sets of states of A
e Every state is annotated by tuple of binary strings
e Using this method we get a different annotated proof system

e Sequents have form = p7*, ..., 7"
e No extra information needed!

17/29

BT proof rules

Ax1: 07_7_r Ax2: — Ry: gpa,wU’r R (PO',r o, T
PP ’ (e V), T (pAe)7, T
a.r x\vx. U[k‘lk, IO«
o: B A Ru: Pl where k = Qo (vx.p)
D@U,OF,A yx,@g7r
o [Qo (ux.¢) v [F
R - gl T Resolve: ol where 0 > 7
. ux.p?, [07,07, T
(...,St1,...) (-vyStn,y...)
Compress;: il A il where s ¢ I}
ko (s0t,.) (. ;50tn,...) k
©1 yers P Al
(oysts,.n) (st -
Compress;: i —— : where s ¢ l_f(‘ ands#0---0
(...,s1ty,...) (...,s1tp,...) r
()01 y ey P)

18/29

Definition
A BT proof is a BT pre-proof, where on every infinite branch

there is a successful string.

e Completeness and Soundness of BT™ proven by using
determinisation method

e Advantage: Soundness condition on branches instead of traces

19/29

Example BT proof

pux0Ox%, vy Oyl
O(ux0x)°, O(vyOy)!
O(px0x)°, O(vy Oy)t

11

Compress

R

Ro
O(ux0x)%, O(vyOy)! .

O(ux0x)%, vy Oyt

pux0Ox0%, vy Oyl

D(px0x)S, vy Qye .
px0Ox€, vy Oy©
puxOx V vyly©

20/ 29

BT proofs

e Only finitely many sequents on infinite branch
1"

e Add discharge rule:

D*: i

21/29

BT proofs

e Only finitely many sequents on infinite branch
1"

e Add discharge rule:
D L
e Get cyclic proof tree

e Infinite branches correspond to strongly connected components

21/29

BT proofs

e Only finitely many sequents on infinite branch
1"
e Add discharge rule:
D L
e Get cyclic proof tree

e Infinite branches correspond to strongly connected components
Definition _
A BT proof is a finite BT pre-proof, where for every strongly

connected subgraph there is a successful string.

e Comparing to Jungteerapanich system: Trade-off between
extra information and stronger soundness condition

21/29

Example BT proof

[uxBx°, vy Oy
O(ux0x)°, O(vyOy)!
O(pux0x)°, O(vy Oy)t

O(ux0x)?, vy Oyl

Compress'!

R.U
Dx

px0Ox%, vy Oyt
ux0x% vy oyl

Ro
O(ux0x)°, O(vy Oy)!

O(ux0x)S, vy Cy*

pxBxe, vy Oy©
pux0Ox V vydy©

22/29

Other logics

Same method could be applied to other logics:

23/29

Other logics

Same method could be applied to other logics:

e Alternation-free mu-calculus:

e Weak co-Biichi automaton
e Determinisation corresponds to Focus system

23/29

Other logics

Same method could be applied to other logics:

e Alternation-free mu-calculus:

e Weak co-Biichi automaton
e Determinisation corresponds to Focus system

e FOLp, Cyclic PA, etc...

e Biichi automaton
e Binary strings as annotations

23/29

Conclusion

e Introduced determinisation method for nondeterministic parity
automata

24 /29

Conclusion

e Introduced determinisation method for nondeterministic parity
automata

e Explicitly used this method to obtain proof system for the
modal mu-calculus

24 /29

Coffee |

25 /29

Example 1

Let B be the following nondeterministic Biichi automaton:

°

26 /29

Example 1

Let B be the following nondeterministic Biichi automaton:

°

The subset construction yields the deterministic automaton B°

l
O=

26 /29

Example 1

Let B be the following nondeterministic Biichi automaton:

°

The subset construction yields the deterministic automaton B°

l
O=

e Yet B® is accepting and B is not!
26 /29

Example 2

Let B be the following nondeterministic Biichi automaton:

2 () 2
_/

27/29

Example 3

Let B be the following nondeterministic Biichi automaton:

28 /29

Thank you !

29 /29

