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Preliminaries:

e Modal p-calculus
e Proof system for the p-calculus
e Automata theory

Show connections of automata theory and proof system

Introduce determinisation method for parity automata

Define proof system using automata

Discuss benefits of this system
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Modal p-calculus

The formulas in the modal p-calculus are generated by the grammar

pu=p | Pl LT eve | oAp | Co | Op | uxe | vxe

e Formulas of the form ux ¢ and vx ¢ are called fixpoint
formulas and interpreted as the least and greatest fixpoint of ¢

e In ux ¢ and vx ¢ there are no occurrences of X in ¢

e A fixpoint formula ¢ is more important than a fixpoint formula
¥ if ¢ is a subformula of ¢
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Let M = (W, R, V) be the following Kripke model
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Let M = (W, R, V) be the following Kripke model
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e M,w [~ Op
o M,w = px (p Vv Ox)
e M,w [~ rvx Ox
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Proof theory of the modal p-calculus

e [Kozen '83] introduced finitary proof system with explicit
induction rules
e Completeness proven by [Walukiewicz '00]

e [Niwinski, Walukiewicz '96] introduced infinitary tableaux
games in which one player has winning strategy iff formula is

valid
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NW pre-proofs

An NW pre-proof is a, possibly infinite, tree defined from the
following rules:

o, ¥, R, o, T

Axl: — Ax2: —— Ry: AS
p.p, T T,r oV, e N, T
Al plux-o/x],T plvx.p/x],T
Ro: ——— Ry ———— Ry ———
O, O, A ux.p, I vx.p, [
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NW pre-proofs

An NW pre-proof is a, possibly infinite, tree defined from the
following rules:

o, ¥, R, o, T

Ax1: Ax2: —— R.:

p.B.T TT T ove T Y enayT
2 - elpx.p/x],T - plvx.o/x],T
Op, O A a ux.p, T . vx.p, T

e There are infinite branches

e But only finitely many sequents
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Example NW pre-proof

prOx, vyly
O
O(pzOz), O (ry<y) -

O(pzOz), vyy

prOz, vyly R B

pxOx V vyly v

Figure 1: NW pre-proof of uxOx V vy<ly
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NW proofs

e A trace (¢j)jew on an infinite branch is an infinite sequence of
formulas such that ; is an immediate ancestor of ;1 for
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NW proofs

e A trace (¢j)jew on an infinite branch is an infinite sequence of
formulas such that ; is an immediate ancestor of ;1 for
J Ew.
e A trace is called v-trace if the most important fixpoint formula
unfolded infinitely often is a v-formula.
Definition
An NW proofis an NW pre-proof, where on every infinite branch
there is a v-trace.
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Example NW proof

prOx, vyly
O(pzOz), O (ry<y) RD

O(pz0x), vyly

prOz, vyly R B

pxOx V vyly v

Figure 2: NW proof of uxOx V vy<y
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inputs
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w-automata

Variation of finite state automaton which has infinite strings as
inputs

Definition

Let X be a finite set, called an alphabet. A non-deterministic
automaton over ¥ is a quadruple A = (A, A, a;, Acc), where A'is a
finite set, A : Ax X — P(A) is the transition function of A, a; € A
its initial state and Acc C A“ its acceptance condition.

e An automaton is called deterministic if for all pairs
(a,y) € Ax X it holds |A(a, y)| = 1.

e A run of an automaton on a word w = ypy1ys... € £ is an
infinite sequence agajaz... € A“ such that ap = a; and
ai+1 € A(aj, y;) forall i € w.

e A word w is accepted by A if there is a run of A on w in Acc.
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Example w-automata

Let X = {0,1} and A = (A, A, a;, Acc) be given as

0 1
() 1 ()
(= X

0
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Example w-automata

Let X = {0,1} and A = (A, A, a;, Acc) be given as

0 1
() 1 ()
(oY)

0

The acceptance condition can be given in different ways:
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Bichi automata

Let X = {0,1} and A = (A, A, ag, Acc) be given as

0 1
é

The acceptance condition can be given in different ways:

0

e A Biichi condition is given as a subset F C A. The
corresponding acceptance condition is the set of runs, which
contain infinitely many states in F.
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Parity automata

Let ¥ = {0,1} and A = (A, A, ag, Acc) be given as

1

v.v

0

B -
p -

The acceptance condition can be given in different ways:

e A parity condition is given as a map Q : A — w. The
corresponding acceptance condition is the set of runs « such
that max{€Q(a) | a occurs infinitely often in o} is even.
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Recap NW proofs

An NW pre-proof is a, possibly infinite, tree defined from the

following rules:

Ax1:

AX2: - R . @7w7r R . SO’r 1/}7|_

p.p.T T, T ove, T Y oAy
Al plux-o/x],T plvx.p/x],T
Ro: ——~—— R, 770 R, IR
Op, O, A ux.p, I vx.p, [
Definition

An NW proofis an NW pre-proof, where on every infinite branch
there is a v-trace.
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Tracking automaton

We can define nondeterministic parity automaton A s.t. for all
infinite branches « in an NW pre-proof:

A accepts o < there is a v-trace on «
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Tracking automaton

We can define nondeterministic parity automaton A s.t. for all
infinite branches « in an NW pre-proof:

A accepts o < there is a v-trace on «

Idea:

e States are formulas

e Transitions given by ancestor relation
e Parity of fixpoint formulas:

e v-formulas get even parity
e u-formulas get odd parity
e More important fixpoint formulas get higher parity
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Obtaining new proof system

Idea: build automaton into proof system

e Sequents of form a I, where a state of tracking automaton A
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Obtaining new proof system

Idea: build automaton into proof system
e Sequents of form a I, where a state of tracking automaton A

Need automaton to be deterministic!

Let AP be deterministic automaton accepting same language as A
e Sequents of form a - I', where a state of AP

Main advantage: Soundness condition based on branches instead of
traces
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Explicit determinisation

e Most known determinisation method is Safra construction
e Inspired by it [Jungteerapanich '10] and [Stirling '14]
introduced annotated proof system

e Sequents have form 6 F @f*, ..., b
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Explicit determinisation

Most known determinisation method is Safra construction

®
e Inspired by it [Jungteerapanich '10] and [Stirling '14]
introduced annotated proof system
e Sequents have form 6 F @f*, ..., b
e We develop determinisation method for nondeterministic
automata using binary trees
e States of deterministic automaton B consists of
e Sets of states of A
e Every state is annotated by tuple of binary strings
e Using this method we get a different annotated proof system

e Sequents have form = p7*, ..., 7"
e No extra information needed!
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BT proof rules

Ax1: 07_7_r Ax2: — Ry: gpa,wU’r R (PO',r o, T
PP ’ (e V), T (pAe)7, T
a.r x\vx. U[k‘lk, IO«
o: B A Ru: Pl where k = Qo (vx.p)
D@U,OF,A yx,@g7r
o [Qo (ux.¢) v [F
R - gl T Resolve: ol where 0 > 7
. ux.p?, [ 07,07, T
(...,St1,...) (-vyStn,y...)
Compress;: il A il where s ¢ I}
ko (s0t,.) (. ;50tn,...) k
©1 yers P Al
(oysts,.n) (st -
Compress;: i —— : where s ¢ l_f(‘ ands#0---0
(...,s1ty,...) (...,s1tp,...) r
()01 y ey P )

18/29



Definition
A BT proof is a BT pre-proof, where on every infinite branch

there is a successful string.

e Completeness and Soundness of BT™ proven by using
determinisation method

e Advantage: Soundness condition on branches instead of traces
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Example BT proof

pux0Ox%, vy Oyl
O(ux0x)°, O(vyOy)!
O(px0x)°, O(vy Oy )t

11

Compress

R

Ro
O(ux0x)%, O(vyOy)! .

O(ux0x)%, vy Oyt

pux0Ox0%, vy Oyl

D(px0x)S, vy Qye .
px0Ox€, vy Oy©
puxOx V vyly©
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BT proofs

e Only finitely many sequents on infinite branch
1"

e Add discharge rule:

D*: i
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BT proofs

e Only finitely many sequents on infinite branch
1"
e Add discharge rule:
D L
e Get cyclic proof tree

e Infinite branches correspond to strongly connected components
Definition _
A BT proof is a finite BT pre-proof, where for every strongly

connected subgraph there is a successful string.

e Comparing to Jungteerapanich system: Trade-off between
extra information and stronger soundness condition
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Example BT proof

[uxBx°, vy Oy
O(ux0x)°, O(vyOy)!
O(pux0x)°, O(vy Oy)t

O(ux0x)?, vy Oyl

Compress'!

R.U
Dx

px0Ox%, vy Oyt
ux0x% vy oyl

Ro
O(ux0x)°, O(vy Oy)!

O(ux0x)S, vy Cy*

pxBxe, vy Oy©
pux0Ox V vydy©
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Other logics

Same method could be applied to other logics:
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Other logics

Same method could be applied to other logics:

e Alternation-free mu-calculus:

e Weak co-Biichi automaton
e Determinisation corresponds to Focus system

e FOLp, Cyclic PA, etc...

e Biichi automaton
e Binary strings as annotations
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Conclusion

e Introduced determinisation method for nondeterministic parity
automata
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Conclusion

e Introduced determinisation method for nondeterministic parity
automata

e Explicitly used this method to obtain proof system for the
modal mu-calculus
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Coffee |
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Example 1

Let B be the following nondeterministic Biichi automaton:

°

26 /29



Example 1

Let B be the following nondeterministic Biichi automaton:

°

The subset construction yields the deterministic automaton B°

l
O=

26 /29



Example 1

Let B be the following nondeterministic Biichi automaton:

°

The subset construction yields the deterministic automaton B°

l
O=

e Yet B® is accepting and B is not!
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Example 2

Let B be the following nondeterministic Biichi automaton:

2 () 2
_/
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Example 3

Let B be the following nondeterministic Biichi automaton:
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Thank you !
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