
Using automata theory to obtain a new

proof system for the modal μ-calculus

Johannes Kloibhofer

(j.w.w. Maurice Dekker, Johannes Marti, Yde Venema)

April 21, 2023

Institute for Logic, Language and Computation

University of Amsterdam, Netherlands

1 / 29

Outline

� Preliminaries:

� Modal µ-calculus

� Proof system for the µ-calculus

� Automata theory

� Show connections of automata theory and proof system

� Introduce determinisation method for parity automata

� De�ne proof system using automata

� Discuss bene�ts of this system

2 / 29

Outline

� Preliminaries:

� Modal µ-calculus

� Proof system for the µ-calculus

� Automata theory

� Show connections of automata theory and proof system

� Introduce determinisation method for parity automata

� De�ne proof system using automata

� Discuss bene�ts of this system

2 / 29

Outline

� Preliminaries:

� Modal µ-calculus

� Proof system for the µ-calculus

� Automata theory

� Show connections of automata theory and proof system

� Introduce determinisation method for parity automata

� De�ne proof system using automata

� Discuss bene�ts of this system

2 / 29

Outline

� Preliminaries:

� Modal µ-calculus

� Proof system for the µ-calculus

� Automata theory

� Show connections of automata theory and proof system

� Introduce determinisation method for parity automata

� De�ne proof system using automata

� Discuss bene�ts of this system

2 / 29

Outline

� Preliminaries:

� Modal µ-calculus

� Proof system for the µ-calculus

� Automata theory

� Show connections of automata theory and proof system

� Introduce determinisation method for parity automata

� De�ne proof system using automata

� Discuss bene�ts of this system

2 / 29

Modal µ-calculus

The formulas in the modal µ-calculus are generated by the grammar

φ ::= p | p | ⊥ | ⊤ | φ∨φ | φ∧φ | 3φ | 2φ | µx φ | νx φ

� Formulas of the form µx φ and νx φ are called �xpoint

formulas and interpreted as the least and greatest �xpoint of φ

� In µx φ and νx φ there are no occurrences of x in φ

� A �xpoint formula φ is more important than a �xpoint formula

ψ if φ is a subformula of ψ

3 / 29

Modal µ-calculus

The formulas in the modal µ-calculus are generated by the grammar

φ ::= p | p | ⊥ | ⊤ | φ∨φ | φ∧φ | 3φ | 2φ | µx φ | νx φ

� Formulas of the form µx φ and νx φ are called �xpoint

formulas and interpreted as the least and greatest �xpoint of φ

� In µx φ and νx φ there are no occurrences of x in φ

� A �xpoint formula φ is more important than a �xpoint formula

ψ if φ is a subformula of ψ

3 / 29

Modal µ-calculus

The formulas in the modal µ-calculus are generated by the grammar

φ ::= p | p | ⊥ | ⊤ | φ∨φ | φ∧φ | 3φ | 2φ | µx φ | νx φ

� Formulas of the form µx φ and νx φ are called �xpoint

formulas and interpreted as the least and greatest �xpoint of φ

� In µx φ and νx φ there are no occurrences of x in φ

� A �xpoint formula φ is more important than a �xpoint formula

ψ if φ is a subformula of ψ

3 / 29

Modal µ-calculus

The formulas in the modal µ-calculus are generated by the grammar

φ ::= p | p | ⊥ | ⊤ | φ∨φ | φ∧φ | 3φ | 2φ | µx φ | νx φ

� Formulas of the form µx φ and νx φ are called �xpoint

formulas and interpreted as the least and greatest �xpoint of φ

� In µx φ and νx φ there are no occurrences of x in φ

� A �xpoint formula φ is more important than a �xpoint formula

ψ if φ is a subformula of ψ

3 / 29

Example

Let M = (W ,R,V) be the following Kripke model

w

w1 w2

p

w3

p

w4

� M,w |= 3p

� M,w ̸|= 2p

� M,w |= µx (p ∨2x)

� M,w ̸|= νx 3x

4 / 29

Example

Let M = (W ,R,V) be the following Kripke model

w

w1 w2

p

w3

p

w4

� M,w |= 3p

� M,w ̸|= 2p

� M,w |= µx (p ∨2x)

� M,w ̸|= νx 3x

4 / 29

Example

Let M = (W ,R,V) be the following Kripke model

w

w1 w2

p

w3

p

w4

� M,w |= 3p

� M,w ̸|= 2p

� M,w |= µx (p ∨2x)

� M,w ̸|= νx 3x

4 / 29

Example

Let M = (W ,R,V) be the following Kripke model

w

w1 w2

p

w3

p

w4

� M,w |= 3p

� M,w ̸|= 2p

� M,w |= µx (p ∨2x)

� M,w ̸|= νx 3x

4 / 29

Example

Let M = (W ,R,V) be the following Kripke model

w

w1 w2

p

w3

p

w4

� M,w |= 3p

� M,w ̸|= 2p

� M,w |= µx (p ∨2x)

� M,w ̸|= νx 3x

4 / 29

Proof theory of the modal µ-calculus

� [Kozen '83] introduced �nitary proof system with explicit

induction rules

� Completeness proven by [Walukiewicz '00]

� [Niwi«ski, Walukiewicz '96] introduced in�nitary tableaux

games in which one player has winning strategy i� formula is

valid

5 / 29

Proof theory of the modal µ-calculus

� [Kozen '83] introduced �nitary proof system with explicit

induction rules

� Completeness proven by [Walukiewicz '00]

� [Niwi«ski, Walukiewicz '96] introduced in�nitary tableaux

games in which one player has winning strategy i� formula is

valid

5 / 29

Proof theory of the modal µ-calculus

� [Kozen '83] introduced �nitary proof system with explicit

induction rules

� Completeness proven by [Walukiewicz '00]

� [Niwi«ski, Walukiewicz '96] introduced in�nitary tableaux

games in which one player has winning strategy i� formula is

valid

5 / 29

NW pre-proofs

An NW pre-proof is a, possibly in�nite, tree de�ned from the

following rules:

Ax1:
p, p̄, Γ

Ax2:
⊤, Γ

φ,ψ, Γ
R∨:

φ ∨ ψ, Γ
φ, Γ ψ, Γ

R∧:
φ ∧ ψ, Γ

φ, Γ
R2:

2φ,3Γ,∆

φ[µx .φ/x], Γ
Rµ:

µx .φ, Γ

φ[νx .φ/x], Γ
Rν :

νx .φ, Γ

� There are in�nite branches

� But only �nitely many sequents

6 / 29

NW pre-proofs

An NW pre-proof is a, possibly in�nite, tree de�ned from the

following rules:

Ax1:
p, p̄, Γ

Ax2:
⊤, Γ

φ,ψ, Γ
R∨:

φ ∨ ψ, Γ
φ, Γ ψ, Γ

R∧:
φ ∧ ψ, Γ

φ, Γ
R2:

2φ,3Γ,∆

φ[µx .φ/x], Γ
Rµ:

µx .φ, Γ

φ[νx .φ/x], Γ
Rν :

νx .φ, Γ

� There are in�nite branches

� But only �nitely many sequents

6 / 29

Example NW pre-proof

Figure 1: NW pre-proof of µx2x ∨ νy3y

7 / 29

NW proofs

� A trace (φj)j∈ω on an in�nite branch is an in�nite sequence of

formulas such that φj is an immediate ancestor of φj+1 for

j ∈ ω.

� A trace is called ν-trace if the most important �xpoint formula

unfolded in�nitely often is a ν-formula.

De�nition

An NW proof is an NW pre-proof, where on every in�nite branch

there is a ν-trace.

8 / 29

NW proofs

� A trace (φj)j∈ω on an in�nite branch is an in�nite sequence of

formulas such that φj is an immediate ancestor of φj+1 for

j ∈ ω.

� A trace is called ν-trace if the most important �xpoint formula

unfolded in�nitely often is a ν-formula.

De�nition

An NW proof is an NW pre-proof, where on every in�nite branch

there is a ν-trace.

8 / 29

NW proofs

� A trace (φj)j∈ω on an in�nite branch is an in�nite sequence of

formulas such that φj is an immediate ancestor of φj+1 for

j ∈ ω.

� A trace is called ν-trace if the most important �xpoint formula

unfolded in�nitely often is a ν-formula.

De�nition

An NW proof is an NW pre-proof, where on every in�nite branch

there is a ν-trace.

8 / 29

Example NW proof

Figure 2: NW proof of µx2x ∨ νy3y

9 / 29

ω-automata

Variation of �nite state automaton which has in�nite strings as

inputs

De�nition

Let Σ be a �nite set, called an alphabet. A non-deterministic

automaton over Σ is a quadruple A = ⟨A,∆, aI ,Acc⟩, where A is a

�nite set, ∆ : A×Σ → P(A) is the transition function of A, aI ∈ A

its initial state and Acc ⊆ Aω its acceptance condition.

� An automaton is called deterministic if for all pairs

(a, y) ∈ A× Σ it holds |∆(a, y)| = 1.

� A run of an automaton on a word w = y0y1y2... ∈ Σω is an

in�nite sequence a0a1a2... ∈ Aω such that a0 = aI and

ai+1 ∈ ∆(ai , yi) for all i ∈ ω.

� A word w is accepted by A if there is a run of A on w in Acc.

10 / 29

ω-automata

Variation of �nite state automaton which has in�nite strings as

inputs

De�nition

Let Σ be a �nite set, called an alphabet. A non-deterministic

automaton over Σ is a quadruple A = ⟨A,∆, aI ,Acc⟩, where A is a

�nite set, ∆ : A×Σ → P(A) is the transition function of A, aI ∈ A

its initial state and Acc ⊆ Aω its acceptance condition.

� An automaton is called deterministic if for all pairs

(a, y) ∈ A× Σ it holds |∆(a, y)| = 1.

� A run of an automaton on a word w = y0y1y2... ∈ Σω is an

in�nite sequence a0a1a2... ∈ Aω such that a0 = aI and

ai+1 ∈ ∆(ai , yi) for all i ∈ ω.

� A word w is accepted by A if there is a run of A on w in Acc.

10 / 29

ω-automata

Variation of �nite state automaton which has in�nite strings as

inputs

De�nition

Let Σ be a �nite set, called an alphabet. A non-deterministic

automaton over Σ is a quadruple A = ⟨A,∆, aI ,Acc⟩, where A is a

�nite set, ∆ : A×Σ → P(A) is the transition function of A, aI ∈ A

its initial state and Acc ⊆ Aω its acceptance condition.

� An automaton is called deterministic if for all pairs

(a, y) ∈ A× Σ it holds |∆(a, y)| = 1.

� A run of an automaton on a word w = y0y1y2... ∈ Σω is an

in�nite sequence a0a1a2... ∈ Aω such that a0 = aI and

ai+1 ∈ ∆(ai , yi) for all i ∈ ω.

� A word w is accepted by A if there is a run of A on w in Acc.

10 / 29

ω-automata

Variation of �nite state automaton which has in�nite strings as

inputs

De�nition

Let Σ be a �nite set, called an alphabet. A non-deterministic

automaton over Σ is a quadruple A = ⟨A,∆, aI ,Acc⟩, where A is a

�nite set, ∆ : A×Σ → P(A) is the transition function of A, aI ∈ A

its initial state and Acc ⊆ Aω its acceptance condition.

� An automaton is called deterministic if for all pairs

(a, y) ∈ A× Σ it holds |∆(a, y)| = 1.

� A run of an automaton on a word w = y0y1y2... ∈ Σω is an

in�nite sequence a0a1a2... ∈ Aω such that a0 = aI and

ai+1 ∈ ∆(ai , yi) for all i ∈ ω.

� A word w is accepted by A if there is a run of A on w in Acc.

10 / 29

ω-automata

Variation of �nite state automaton which has in�nite strings as

inputs

De�nition

Let Σ be a �nite set, called an alphabet. A non-deterministic

automaton over Σ is a quadruple A = ⟨A,∆, aI ,Acc⟩, where A is a

�nite set, ∆ : A×Σ → P(A) is the transition function of A, aI ∈ A

its initial state and Acc ⊆ Aω its acceptance condition.

� An automaton is called deterministic if for all pairs

(a, y) ∈ A× Σ it holds |∆(a, y)| = 1.

� A run of an automaton on a word w = y0y1y2... ∈ Σω is an

in�nite sequence a0a1a2... ∈ Aω such that a0 = aI and

ai+1 ∈ ∆(ai , yi) for all i ∈ ω.

� A word w is accepted by A if there is a run of A on w in Acc.

10 / 29

Example ω-automata

Let Σ = {0, 1} and A = ⟨A,∆, aI ,Acc⟩ be given as

a0 a1

1

0

0 1

The acceptance condition can be given in di�erent ways:

11 / 29

Example ω-automata

Let Σ = {0, 1} and A = ⟨A,∆, aI ,Acc⟩ be given as

a0 a1

1

0

0 1

The acceptance condition can be given in di�erent ways:

11 / 29

Büchi automata

Let Σ = {0, 1} and A = ⟨A,∆, a0,Acc⟩ be given as

a0 a1

1

0

0 1

The acceptance condition can be given in di�erent ways:

� A Büchi condition is given as a subset F ⊆ A. The

corresponding acceptance condition is the set of runs, which

contain in�nitely many states in F .

12 / 29

Parity automata

Let Σ = {0, 1} and A = ⟨A,∆, a0,Acc⟩ be given as

a0

2

a1

3

1

0

0 1

The acceptance condition can be given in di�erent ways:

� A parity condition is given as a map Ω : A → ω. The

corresponding acceptance condition is the set of runs α such

that max{Ω(a) | a occurs in�nitely often in α} is even.

13 / 29

Recap NW proofs

An NW pre-proof is a, possibly in�nite, tree de�ned from the

following rules:

Ax1:
p, p̄, Γ

Ax2:
⊤, Γ

φ,ψ, Γ
R∨:

φ ∨ ψ, Γ
φ, Γ ψ, Γ

R∧:
φ ∧ ψ, Γ

φ, Γ
R2:

2φ,3Γ,∆

φ[µx .φ/x], Γ
Rµ:

µx .φ, Γ

φ[νx .φ/x], Γ
Rν :

νx .φ, Γ

De�nition

An NW proof is an NW pre-proof, where on every in�nite branch

there is a ν-trace.

14 / 29

Tracking automaton

We can de�ne nondeterministic parity automaton A s.t. for all

in�nite branches α in an NW pre-proof:

A accepts α⇔ there is a ν-trace on α

Idea:

� States are formulas

� Transitions given by ancestor relation

� Parity of �xpoint formulas:

� ν-formulas get even parity

� µ-formulas get odd parity

� More important �xpoint formulas get higher parity

15 / 29

Tracking automaton

We can de�ne nondeterministic parity automaton A s.t. for all

in�nite branches α in an NW pre-proof:

A accepts α⇔ there is a ν-trace on α

Idea:

� States are formulas

� Transitions given by ancestor relation

� Parity of �xpoint formulas:

� ν-formulas get even parity

� µ-formulas get odd parity

� More important �xpoint formulas get higher parity

15 / 29

Obtaining new proof system

Idea: build automaton into proof system

� Sequents of form a ⊢ Γ, where a state of tracking automaton A

Need automaton to be deterministic!

Let AD be deterministic automaton accepting same language as A

� Sequents of form a ⊢ Γ, where a state of AD

Main advantage: Soundness condition based on branches instead of

traces

16 / 29

Obtaining new proof system

Idea: build automaton into proof system

� Sequents of form a ⊢ Γ, where a state of tracking automaton A

Need automaton to be deterministic!

Let AD be deterministic automaton accepting same language as A

� Sequents of form a ⊢ Γ, where a state of AD

Main advantage: Soundness condition based on branches instead of

traces

16 / 29

Obtaining new proof system

Idea: build automaton into proof system

� Sequents of form a ⊢ Γ, where a state of tracking automaton A

Need automaton to be deterministic!

Let AD be deterministic automaton accepting same language as A

� Sequents of form a ⊢ Γ, where a state of AD

Main advantage: Soundness condition based on branches instead of

traces

16 / 29

Explicit determinisation

� Most known determinisation method is Safra construction

� Inspired by it [Jungteerapanich '10] and [Stirling '14]

introduced annotated proof system

� Sequents have form θ ⊢ φρ1
1
, ..., φρn

n

� We develop determinisation method for nondeterministic

automata using binary trees

� States of deterministic automaton B consists of

� Sets of states of A
� Every state is annotated by tuple of binary strings

� Using this method we get a di�erent annotated proof system

� Sequents have form ⊢ φσ1
1
, ..., φσn

n

� No extra information needed!

17 / 29

Explicit determinisation

� Most known determinisation method is Safra construction

� Inspired by it [Jungteerapanich '10] and [Stirling '14]

introduced annotated proof system

� Sequents have form θ ⊢ φρ1
1
, ..., φρn

n

� We develop determinisation method for nondeterministic

automata using binary trees

� States of deterministic automaton B consists of

� Sets of states of A
� Every state is annotated by tuple of binary strings

� Using this method we get a di�erent annotated proof system

� Sequents have form ⊢ φσ1
1
, ..., φσn

n

� No extra information needed!

17 / 29

Explicit determinisation

� Most known determinisation method is Safra construction

� Inspired by it [Jungteerapanich '10] and [Stirling '14]

introduced annotated proof system

� Sequents have form θ ⊢ φρ1
1
, ..., φρn

n

� We develop determinisation method for nondeterministic

automata using binary trees

� States of deterministic automaton B consists of

� Sets of states of A
� Every state is annotated by tuple of binary strings

� Using this method we get a di�erent annotated proof system

� Sequents have form ⊢ φσ1
1
, ..., φσn

n

� No extra information needed!

17 / 29

BT proof rules

Ax1:
pσ, p̄τ , Γ

Ax2:
⊤σ, Γ

φσ, ψσ, Γ
R∨:

(φ ∨ ψ)σ, Γ
φσ, Γ ψσ, Γ

R∧:
(φ ∧ ψ)σ, Γ

φσ, Γ
R2:

2φσ,3Γ,∆

φ[x\νx .φ]σ↾k·1k , Γ·0k
Rν : where k = ΩΦ(νx .φ)

νx .φσ, Γ

φ[x\µx .φ]σ↾ΩΦ(µx .φ), Γ
Rµ:

µx .φσ, Γ

φσ, Γ
Resolve: where σ > τ

φσ, φτ , Γ

φ
(...,st1,...)
1 , ..., φ

(...,stn,...)
n , Γ

Compresss0k : where s /∈ ΓAk
φ
(...,s0t1,...)
1 , ..., φ

(...,s0tn,...)
n , Γ

φ
(...,st1,...)
1 , ..., φ

(...,stn,...)
n , Γ

Compresss1k : where s /∈ ΓAk and s ̸= 0 · · · 0
φ
(...,s1t1,...)
1 , ..., φ

(...,s1tn,...)
n , Γ

18 / 29

BT
∞ proofs

De�nition

A BT∞ proof is a BT pre-proof, where on every in�nite branch

there is a successful string.

� Completeness and Soundness of BT∞ proven by using

determinisation method

� Advantage: Soundness condition on branches instead of traces

19 / 29

Example BT∞ proof

...

µx2x0, νy3y1
R2

2(µx2x)0,3(νy3y)1
Compress11

2(µx2x)0,3(νy3y)11
Rν

2(µx2x)0, νy3y1
Rµ

µx2x0, νy3y1
R2

2(µx2x)0,3(νy3y)1
Rν

2(µx2x)ϵ, νy3y ϵ
Rµ

µx2xϵ, νy3y ϵ
R∨

µx2x ∨ νy3y ϵ

20 / 29

BT proofs

� Only �nitely many sequents on in�nite branch

� Add discharge rule:

[Γ]x

...
Γ

Dx:
Γ

� Get cyclic proof tree

� In�nite branches correspond to strongly connected components

De�nition

A BT proof is a �nite BT pre-proof, where for every strongly

connected subgraph there is a successful string.

� Comparing to Jungteerapanich system: Trade-o� between

extra information and stronger soundness condition

21 / 29

BT proofs

� Only �nitely many sequents on in�nite branch

� Add discharge rule:

[Γ]x

...
Γ

Dx:
Γ

� Get cyclic proof tree

� In�nite branches correspond to strongly connected components

De�nition

A BT proof is a �nite BT pre-proof, where for every strongly

connected subgraph there is a successful string.

� Comparing to Jungteerapanich system: Trade-o� between

extra information and stronger soundness condition

21 / 29

BT proofs

� Only �nitely many sequents on in�nite branch

� Add discharge rule:

[Γ]x

...
Γ

Dx:
Γ

� Get cyclic proof tree

� In�nite branches correspond to strongly connected components

De�nition

A BT proof is a �nite BT pre-proof, where for every strongly

connected subgraph there is a successful string.

� Comparing to Jungteerapanich system: Trade-o� between

extra information and stronger soundness condition

21 / 29

Example BT proof

[µx2x0, νy3y1]x
R2

2(µx2x)0,3(νy3y)1
Compress11

2(µx2x)0,3(νy3y)11
Rν

2(µx2x)0, νy3y1
Rµ

µx2x0, νy3y1
Dx

µx2x0, νy3y1
R2

2(µx2x)0,3(νy3y)1
Rν

2(µx2x)ϵ, νy3y ϵ
Rµ

µx2xϵ, νy3y ϵ
R∨

µx2x ∨ νy3y ϵ

22 / 29

Other logics

Same method could be applied to other logics:

� Alternation-free mu-calculus:

� Weak co-Büchi automaton

� Determinisation corresponds to Focus system

� FOLID, Cyclic PA, etc...

� Büchi automaton

� Binary strings as annotations

23 / 29

Other logics

Same method could be applied to other logics:

� Alternation-free mu-calculus:

� Weak co-Büchi automaton

� Determinisation corresponds to Focus system

� FOLID, Cyclic PA, etc...

� Büchi automaton

� Binary strings as annotations

23 / 29

Other logics

Same method could be applied to other logics:

� Alternation-free mu-calculus:

� Weak co-Büchi automaton

� Determinisation corresponds to Focus system

� FOLID, Cyclic PA, etc...

� Büchi automaton

� Binary strings as annotations

23 / 29

Conclusion

� Introduced determinisation method for nondeterministic parity

automata

� Explicitly used this method to obtain proof system for the

modal mu-calculus

24 / 29

Conclusion

� Introduced determinisation method for nondeterministic parity

automata

� Explicitly used this method to obtain proof system for the

modal mu-calculus

24 / 29

Co�ee !

25 / 29

Example 1

Let B be the following nondeterministic Büchi automaton:

a0 a1

The subset construction yields the deterministic automaton BS

{a0} {a0, a1}

� Yet BS is accepting and B is not!

26 / 29

Example 1

Let B be the following nondeterministic Büchi automaton:

a0 a1

The subset construction yields the deterministic automaton BS

{a0} {a0, a1}

� Yet BS is accepting and B is not!

26 / 29

Example 1

Let B be the following nondeterministic Büchi automaton:

a0 a1

The subset construction yields the deterministic automaton BS

{a0} {a0, a1}

� Yet BS is accepting and B is not!
26 / 29

Example 2

Let B be the following nondeterministic Büchi automaton:

a0 a1 a2

27 / 29

Example 3

Let B be the following nondeterministic Büchi automaton:

a0 a1 a2

28 / 29

Thank you !

29 / 29

