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Motivation
Introduction

Consider Horn formula equations, i.e. special existential second-order
formulas

Interested in first-order solutions

Horn formula equations appear in various areas:

® Second-order quantifier elimination
® Program verification
® Proof theory

® \We prove general results and use them in manifold applications
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Formula equations
Formula equations

Definition

A formula equation has the form 3X1), where X is a tuple of predicate
variables and v is a first-order formula.

Equivalent to 3X (1 <> ¢2), hence "equation”

A formula equation is
® valid: = 3X) o
® solvable: There exist formulas X s.t. |E ¢[X\X]
® There are valid formula equations which are not first-order solvable

Finding X s.t. = ¢[X\] is also known as Boolean solution problem
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Formula equations
Horn formula equations

Definition

A constrained clause is a formula C of the form

n

v\ X@ v\ (),

i=1 j=1

where X;,Y; are predicate variables and + is a first-order formula without
predicate variables. C'is called

® Horn, if n <1,

® dual-Horn, if m <1 and

® linear-Horn, if m,n < 1.

Definition

A Horn formula equation 3X71 is a formula equation of the form
3XV* A, H;, where H; is a constrained Horn clause for i € {1, ...,n}.
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Fixed-point logics

Least fixed-point logic (LFP)

® Extension of first-order logic

® LFP central in finite model theory / descriptive complexity (cf.
Immerman-Vardi theorem '82)

® Define function F, on MF by
F,: Re{zecM'|MEpR,7)}

® If R occurs only positively in ¢, then F, is monotonous
= Least fixed point exists due to Knaster-Tarski theorem

® Introduce LFP atomic formulas [lfpp ¢(R, )], where
M = lipg ¢(R,7)](a) & @ < lp(F,)

® Can be extended to simultaneous fixed points
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Fixed-point logics

® Fixed point can be approximated by relations

=@, S =F, (8%, s*=])s"

B<a

® LFP formula [lfpp ¢(R,T)] can be approximated by FO formulas

L@ =1, ¢"@) = 0", T)
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Fixed-point logics
Example

Let £ = {E} be the language of graphs. Define

o(R,u,v) = E(u,v) V Jw(R(u,w) A\ E(w,v))
As R occurs only positively in ¢ we can define [lfpp ¢(R,u,v)|(x,y).
LFP-formula is approximated by first-order formulas

@z,y) = L
" (@,y) = E(z,y) V Iw(e" (z,w) A E(w,y))
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The fixed-point theorems
Proof Idea

Three different types of clauses in a Horn formula equation 3 X

(B) B 7 = Xo(s),
(I) ’y/\Xl(tl)/\--'/\Xm(tm) —>X0(§),
(B) v AXa(B) A~ A X)L,

® Define a tuple @, of first-order formulas from clauses of the form (B)

and (I)
® This tuple defines LFP-formulas
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The fixed-point theorems
Horn fixed-point theorem

Horn fixed-point theorem

Let 3X¢ be a Horn formula equation and y; := (fpx, Py) for
j€{l,...,n}, then
©® = 3X ¢ < ¢[X\f] and
@® if M |= y[X\R] for some structure M and relations Ry, ..., R, in
M, then M = N\7_; (1 — R;).

® Horn formula equation valid iff it is LFP-solvable
® Analogous theorems for dual-Horn and linear-Horn formula equations

® Generalised for abstract semantics
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The fixed-point theorems
Example

Let £ ={FE,s,t}. Consider the Horn formula equation 3.X¢, with

X(s)
¢EVU,UA X(u) AN E(u,v) — X (v)
- X (t)

Oy (R, z) =2 =5V Iu(E(u,z) A R(u)).
Define 1 = [ifpy @y, then = 3XY < [ X\
Equivalently = 3X ¢ < —u(t)

Connectivity is not expressible in FO
= 34X not solvable in FO!
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Applications
Fixed-point approximation

® Problem: Finding first-order formulas, which approximate existential
second-order formulas

® First investigated by [Ackermann '35] for relational language and one
unary predicate variable

® Used a method similar to modern resolution

® Extended for arbitrary predicate variables in [Wernhard '17]

® Qur ldea: Express LFP-formula as an infinite disjunction of first-order
formulas

Let 3X ) be a Horn formula equation. Then there exists a countable set of
first-order formulas ¥ s.t.

3Xy = /\ ®.

pev

11/21



Applications
Example

Consider the Horn formula equation 93X, with

X(s)
¢EVU,UA X(u) AN E(u,v) — X (v)
—X (1)
® Define formulas
PLlr)y=z=s

" x) =2 = sV Iu(E(u, ) A " (u))

® Then ¢ =\, ¢" is equivalent to [lfpy ®,].
® Thus 3X¢ = Ao, 0" ().
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Applications
Partial Correctness of while-programs

® A Hoare triple {¢}p{t} consists of a program p and two first-order
formulas ¢ and .

® The verification condition ve({¢}p{®}) can be written as a
linear-Horn formula equation s.t.

Fleip{v} & ZEve({elp{y})

® The predicate variables correspond to the loop invariants

® Fixed-point theorem: For every solution X of Z = ve({p}p{v}) it
holds

n
ZE Nwi—=xinxi = v
i=1

® As corollaries: The canonical solutions of our fixed-point theorem
express the weakest precondition and strongest postcondition.
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Applications
Affine solution problem

® Problem: Finding affine subspaces of Q™ which solve a formula
equation without first-order quantifiers in the language

Lag ={0,1,+,{c | c€Q}}
¢ Decidability shown by [Hetzl, Zivota '19]
® Computed a fixed point in lattice of affine subspaces of Q"
® Horn fixed-point theorem not applicable

® Need generalisation!
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Applications
Abstract semantics

Abstract semantics:
® First-order formulas interpreted as usual

® Second-order predicates and LFP-atoms not interpreted in (Mk, <),
but in different lattice (V4, C) s.t.

2
(M*,C) == (Vi,,C)

forms a Galois connection for every k € N
® We call (M, G), where G = (Vi, g, V) ken, @ model abstraction
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Applications
Abstract semantics

Abstract semantics:
® First-order formulas interpreted as usual

® Second-order predicates and LFP-atoms not interpreted in (Mk, <),
but in different lattice (V4, C) s.t.

2
(M*,C) == (Vi,,C)

forms a Galois connection for every k € N
® We call (M, G), where G = (Vi, g, V) ken, @ model abstraction

Example:
® (Q,Gag) is a model abstraction, where
Gar = ((Aff QF, C), affy, idg)ken with
o Aff QF is the set of affine subsets of Q
® aff . is the affine hull
® id;, is embedding of Aff QF in QF
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Applications

Abstract fixed-point theorem

Theorem (Abstract Horn fixed-point theorem)

Let 3X1) be a Horn formula equation and p; := [Ifp x; Py for
j €{1,...,n}, then:
® =. 3X ¢ < ¢[X\z] and
® if (M,Q) =, Y[ X\R] for some model abstraction (M, G) and
abstract relations Ry, ..., Ry, then (M, G) [=a Nj_;(1; — Rj).

® Analogous theorems for dual-Horn and linear-Horn formula equations

® Decidability of affine solution problem follows as direct corollary
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Applications
Inductive theorem proving

® Consider approach to inductive theorem proving based on tree
grammars by [Eberhard, Hetzl '15]
® Generate proof of universal statement:

® First proofs of small instances are computed
® Then second-order unification problem is deduced:

® I'v(a, ) = X(a,0,0)
@ Fl(a7 v, ’7)5 Algign X(a7 n, ti(av v, ’7)) = X(a7 s(n), 7)
© T'2(), A\ << X, 0, u5(a)) = Bla)

® Every solution is an inductive invariant

® Equivalent to a Horn formula equation

® Using fixed-point theorem we get LFP-formula which implies every
solution

® By fixed-point approximation get first-order formulas
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Conclusion
Conclusion

® Horn formula equation satisfiable iff LFP-solvable

® Canonical solutions in LFP
® Applications:
® Second-order quantifier elimination
® Decidability of affine solution problem

® |n program verification we can define an equivalent condition to the
semantics of Hoare triples

® Canonical solutions correspond to weakest precondition and strongest
postcondition

® Algorithmic step in approach to inductive theorem proving
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